INTRODUCTORY ECONOMETRICS Lesson 4

Dr Javier Fernández

etpfemaj@ehu.es

Dpt. of Econometrics & Statistics

UPV-EHU

110101000111010

010111010010

4.1 Dummy Variables. Definition and use in the GLRM.

Dummy Variables: Definition

• Qualitative explanatory var \rightsquigarrow subsamples T_1, T_2, \ldots

according to category or characteristics

- examples:
 - pure qualitative vars:
 - individual diffs: sex, race, civil state, etc.
 - time diffs: season, war/peace, etc.
 - spatial diffs: countries, A.C.'s, urban/rural, etc.
 - quantitative vars by sections: income, age, etc.
- Recall: we cannot use qualitative vars...

then substitute by dummy vars...

Def. of Dummy Variable:

$$D_{jt} = \begin{cases} 1, & ext{if } t \in ext{category } j \\ 0, & ext{otherwise.} \end{cases}$$

$$\Rightarrow D_{jt} = \mathscr{I}(t \in T_j)$$

() J Fernind

Dummy Var Trap: 2 qualitative vars

- Model: $Y_t = \beta_0 + \beta_1 R_t + \gamma_1 S_{1t} + \gamma_2 S_{2t} + \delta_1 T_{1t} + \delta_2 T_{2t} + \delta_3 T_{3t} + u_t$
- Problem (DV trap): X is a $(T \times 7)$ matrix, but

 $S_1 + S_2 = T_1 + T_2 + T_3 = [1]$ (2 exact l.c.) \Rightarrow rk(X) = 5 < 7 (*i.e.* perfect MC)

 $\Rightarrow \det(X'X) = 0$ $\Rightarrow (X'X)^{-1}$ doesn't exist!! and

 $\widehat{\beta}$ cannot be calculated!!

Introductory Econometrics - p. 176/192

General Solution: eliminate ONE of the col's causing the problem: [1] or $(S_1 \text{ or } S_2)$ or $(T_1 \text{ or } T_2 \text{ or } T_3)$.

Solution: DV without combination of categories

MOST USUAL SOLUTION:

eliminate last category of each DV: S_2 and T_3 :

Model to estimate:

$$Y_{t} = \beta_{0} + \beta_{1}R_{t} + \gamma_{1}S_{1t} + \gamma_{2}S_{2t} + \delta_{1}T_{1t} + \delta_{2}T_{2t} + \partial_{3}T_{3t} + u_{t}$$

= $\beta_{0} + \beta_{1}R_{t} + \gamma_{1}S_{1t} + \delta_{1}T_{1t} + \delta_{2}T_{2t} + u_{t}$

		S = M	S = F	M-F
	T = A	$\beta_0 + \beta_1 R_t + \gamma_1 + \delta_1$	$\beta_0 + \beta_1 R_t + \delta_1$	γ1
	T = B	$\beta_0+\beta_1R_t+\gamma_1+\delta_2$	$\beta_0 + \beta_1 R_t + \delta_2$	γ1
Subsample Models:	T = G	$\beta_0 + \beta_1 R_t + \gamma_1$	$\beta_0 + \beta_1 R_t$	γ1
	A-G	δ_1	δ_1	
	B-G	δ_2	δ_2	
	A - B	$\delta_1 - \delta_2$	$\delta_1 - \delta_2$	

) J Fernández (EA3-UPV/EHU), February 31, 20

Introductory Econometrics - p. 177/192

Introductory Economics

Coefficient Interpretation

without categories F nor G

 $E(Y_t|S = M) - E(Y_t|S = F) = \gamma_1$ $E(Y_t|T = A) - E(Y_t|T = G) = \delta_1$ $E(Y_t|T = B) - E(Y_t|T = G) = \delta_2$ $E(Y_t|R_t = 0, S = F, T = G) = \beta_0$

that is.

- β_0 = expected consumption Women *G* (base) if $R_t = 0$.
- $\gamma_1 = \text{diff. expected consumption Men vs. Women }$.
- $\delta_{l} = \text{diff. expected consumption } A \text{ vs. } G.$
- $\delta_2 = \text{diff.}$ expected consumption *B* vs. *G*.
- $\beta_1 = \Delta$ consumption if $\Delta R_t = 1$ (*c.p.*).

Recall: This case just means different intercepts for each category. Recall: Eliminating a (combination of) category(ies)

→ transforms it into reference base.

ntroductory Econometrics - p. 178/192

Usual Tests with 2 QVs

Hypothesis: Variable Sex doesn't affect Consumption (but place of residence might do)

Unrestricted Model:

 $Y_t = \beta_0 + \beta_1 R_t + \gamma_1 S_{1t}$ $+ \delta_1 T_{1t} + \delta_2 T_{2t} + u_t$

 $(\gamma_1 = \text{diff. exp. C of } M \text{ vs. } F)$

- Hypothesis: $H_0: \gamma_1 = 0$ vs. $H_a: \gamma_1 \neq 0$
- Restricted Model:

 $Y_t = \frac{\beta_0 + \beta_1 R_t}{+\delta_1 T_{1t} + \delta_2 T_{2t} + u_t}$

Use usual t Statistic (or F Statistic based on RSS)

) J. Fernández (EA3-UPV/EHU), February 21, 2009

Introductory Economic fors

Other usual Tests with 2 QVs

• Unrestricted Model (without S_2 nor T_3):

 $Y_t = \beta_0 + \beta_1 R_t + \gamma_1 S_{1t} + \delta_1 T_{1t} + \delta_2 T_{2t} + u_t$

- Recall: γ₁ is diff. expected C of M vs. F (base)
 δ₁ and δ₂ are diff. exp. C of A and B vs. G (base)
- Hypothesis: Same Consumption overall

(independently of Sex and Residence):

- $H_0: \gamma_1 = \delta_1 = \delta_2 = 0$
- Restricted Model:

 $Y_t = \frac{\beta_0}{\beta_0} + \beta_1 R_t + u_t$

■ Hypothesis: Place of Residence doesn't affect Consumption

(but M vs. F might do):

- $H_0: \delta_1 = \delta_2 = 0$
- Restricted Model:

 $Y_t = \beta_0 + \beta_1 R_t + \gamma_1 S_{1t} + u_t$

ntronnetory communetors

Other usual Tests with 2 QVs

• Unrestricted Model (without S_2 nor T_3):

$$Y_t = \beta_0 + \beta_1 R_t + \gamma_1 S_{1t} + \delta_1 T_{1t} + \delta_2 T_{2t} + u_t$$

• Recall: δ_1 and δ_2 are diff. expected C of A and B vs. G

(base)

- Hypothesis: Residents of same sex in A and B have same consumption level (but G might be different):
 - $H_0: \delta_1 = \delta_2$ vs. $H_a: \delta_1 \neq \delta_2$
 - Restricted Model:

$$Y_{t} = \beta_{0} + \beta_{1}R_{t} + \gamma_{1}S_{1t} + \delta(\underbrace{T_{1t} + T_{2t}}_{1 - T_{3t}}) + u_{t}$$

- Hypothesis: Residents of same sex in *B* and *G* have same consumption level (but *A* might be different):
 - $H_0: \delta_2 = 0$ vs. $H_a: \delta_2 \neq 0$
 - Restricted Model:

$$Y_t = \frac{\beta_0}{\beta_0} + \beta_1 R_t + \gamma_1 S_{1t} + \frac{\delta_1 T_{1t}}{\delta_1 T_{1t}} + u_t$$

Seasonal Dummy Variables: Definition

Def. of Seasonal Dummy Variable:

 $D_{jt} = \begin{cases} 1, & \text{if } t \in \text{season } j = 1, 2, 3, 4, \dots; \\ 0, & \text{otherwise.} \end{cases}$

date (t)

1975.1

1975.2

1975.3

1975.4

IPI_t

 X_t

-	e.g.	for	quarterly	data:	
---	------	-----	-----------	-------	--

	1976.1		•	1	0	0	0	
	1976.2			0	1	0	0	
	1976.3		•	0	0	1	0	5
	1976.4			0	0	0	1	
	1977.1			1	0	0	0	
	:	:	:					
1.00	2000.1			1	0	0	0	
	2000.2			0	1	0	0	
	2000.3			0	0	1	0	
	2000.4	•		0	0	0	1	
	2001.1		1	1	0	0	0	

 D_{1t} D_{2t}

0

0

0

 D_{3t}

0 0

0

0

0

1

0 1

0

 D_{4t}

0

0

1

ntroductory Econometrics - p. 184/192

troductory Billion Waters

Seasonal Dummy Variables: Definition (2)

Model to estimate:

$$IPI_{t} = \beta_{0} + \beta_{1}X_{t} + \gamma_{1}D_{1t} + \gamma_{2}D_{2t} + \gamma_{3}D_{3t} + \gamma_{4}D_{4t} + u$$

= $\beta_{0} + \beta_{1}X_{t} + \gamma_{1}D_{1t} + \gamma_{2}D_{2t} + \gamma_{3}D_{3t} + u_{t}$

- interpretation of γ parameters?
- What if data are monthly observations (as in the IPI example actually)?

date (t)	IPI _t	Xt	D _{1t}	D_{2t}	D_{3t}	D_{4t}		D_{1t}									<i>D</i>	12t		
1975.jan		•	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	
1975.feb		•	1	0	0	0		0	1	0	0	0	0	0	0	0	0	0	0	
1975.mar		•	1	0	0	0		0	0	1	0	0	0	0	0	0	0	0	0	
1975.apr	•		0	1	0	0		0	0	0	1	0	0	0	0	0	0	0	0	
1975.may			0	1	0	0		0	0	0	0	1	0	0	0	0	0	0	0	
1975.jun			0	1	0	0		0	0	0	0	0	1	0	0	0	0	0	0	
1975.jul			0	0	1	0		0	0	0	0	0	0	1	0	0	0	0	0	
1975.ago			0	0	1	0	or	0	0	0	0	0	0	0	1	0	0	0	0	
1975.sep	· ·		0	0	1	0		0	0	0	0	0	0	0	0	1	0	0	0	
1975.oct	•		0	0	0	1		0	0	0	0	0	0	0	0	0	1	0	0	
1975.nov	· ·		0	0	0	1		0	0	0	0	0	0	0	0	0	0	1	0	
1975.dec			0	0	0	1		0	0	0	0	0	0	0	0	0	0	0	1	
1976.jan			1	0	0	0		1	0	0	0	0	0	0	0	0	0	0	0	
1976.feb		.	1	0	0	0		0	1	0	0	0	0	0	0	0	0	0	0	
1976.mar			1	0	0	0		0	0	1	0	0	0	0	0	0	0	0	0	

J Fernández (EA3-UP)

Introductory Econometrics - p. 185/192

ntroductory concernities

Interaction between DVs and quantitative Vars

Instead of different *intercepts*, we require different slopes for each category:

G J Fernández (EA3-UP/(EHJ), February 21, 2009

